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1.0 Introduction 

There has been much research into wavelets as applied to signal and image processing in 
recent years. Many papers and books have been published on wavelets and their applications 
including an interesting historical perspective.l Many of the papers involve time-frequency or 
scale-frequency analysis, and multiresolution processing but there are many others."" We've 
attempted to collect the most important aspects of wavelets and present them in a manner that is 
easy to understand with an emphasis on optical correlation processing. 

Like the Fourier transform (FT), the wavelet transform (WT) describes a function with basis 
functions. However, the basis functions of the WT, wavelets, are often more complicated than the 
basis functions of the FT, sines and cosines. Furthermore, unlike the FT the basis functions in the 
WT are localized in both the input and wavelet domain. This dual localization has some important 
consequences. One is that many functions and operators can be represented quite sparsely in the 
wavelet domain. In addition, noise may be reduced because it is generally not localized in the 
wavelet domain and it may be easy to separate the noise from a signal. 

Like the FT, the WT is a linear operation which is invertible and can be made orthogonal. In 
its orthogonal form which is used for most applications, the WT operates on vectors whose length 
are a power of two. The size of the vectors in the wavelet domain remains the same as in the input 
domain. There is not a unique set of wavelets so care must be taken when drawing conclusions 
obtained with one set of wavelets. 

We presented an overview of the WT and its implementation including digital and optical 
approaches. We considered the main points of the WT without relying heavily on mathematics in 
attempt to achieve a better understanding. Next, we considered multiresolution approximations 
using the WT. Finally, we presented a multiresolution processing example using an optical corre- 
lator for object recognition. 

2.0 Wavekt transform 

We described the foundations of the WT, first by describing the conditions required for a 
wavelet basis, then the continuous and discrete WT. We then described more practical consider- 
ations including the implementation of the discrete WT using moving-average filters and a algo- 
rithm suitable for programming. Finally, we described the two-dimensional WT. 

2.1 General considerations 
For a function to be a wavelet it must be admissible. In short, admissible functions are those 

that oscillate and have a fast decay, have finite energy, and zero mean. These signals are essen- 
tially bandpass signals and include a large class of functions. A function MO is admissible if 

C-J^m,)|2*><oo (1) 'h w 
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where H(co) is the FT of h(t). For multiresolution, orthogonal, or biorthogonal wavelet transforms, 
wavelets must satisfy additional constraints. 

The decision on which wavelet to use can be made by considering their performance. Differ- 
ent wavelets may perform differently on a particular function. A wavelet that works well for com- 
pression may not work as well for analysis. 

2.2 Continuous WT 
The WT maps a signal in the time domain into a scale-translation domain using scaled and 

translated versions of a wavelet. The original wavelet, where scaled and translated versions are 
made from is called the mother wavelet. The WT of function /*) with respect to an admissible 
mother wavelet h(x) is 

WJia, b)  - 4-J/M h*{X-J-)dx. (2) 
a 

The wavelet hab(x) = A(JC - b)la is a version of the mother wavelet that has been scaled by a factor 
of a, and translated by a factor of b. The factor multiplied by the integral is used to normalize 
energy so that all scaled wavelets have the same energy as the original mother wavelet The free- 
dom of choosing a mother wavelet makes general WT characterizations of a particular function 
difficult. 

In the WT the input function f{x) is being compared to a wavelet hab{x) through a correlation 
or projection. A wavelet domain coefficient is computed for each particular scale and translation 
value a and b. The value of the wavelet coefficient corresponds to the degree of correlation 
between fix) and h^x). Determining these coefficients is the WT. In other words, a function is 
approximated by a weighted sum of the scaled and translated mother wavelet. Each wavelet acts 
as a building block and when summed together the original signal is obtained. 

In addition, the WT is linear and superposition holds. If a function can be described by a sum 
of separate signals, then the WT of the function is the sum of the WT of each of the separate sig- 
nals. 

2-2.1 Inverse continuous WT 
The inverse WT creates the original function by summing weighted, scaled and translated ver- 

sions of the mother wavelet. The weights are the wavelet coefficients WfJ{a,b). The inverse WT 
sums over the two -dimensional scale-translation space as 

1      „»,., ,.,    ,w .x—b.dbda ,-. 

where the constant Q is often dropped. The reconstructing elements are the scaled and translated 
wavelets, but they have not been complex conjugated. If the WT was not taken with respect to the 



same mother wavelet, then the inverse transform with respect to a different mother wavelet will 
not necessarily reconstruct a function that resembles the original. 

23 Discrete wavelet transform 
Analogous to the FT, the discrete WT is usually implemented rather than the continuous WT. 

The continuous WT is redundant and Meyer showed that there exists wavelets which are not 
redundant and form an orthonormal basis. The discrete WT is analogous to the Fourier series 
rather than the discrete FT. The scales and translations are discrete, not necessarily the func- 
tion to be transformed. The wavelet coefficients can be thought of as corresponding to discrete 
points on a a two-dimensional grid in the scale-translation domain. Usually this grid is indexed by 
two integers m and n. In the discrete WT, the scale becomes a = a0

m where a0 is the discrete scale 
step size. The translation b becomes b = nbfflQ1 where bgag" is the discrete translation step size. 

The discrete WT is defined with respect to a continuous mother wavelet and can be written as 

Wrfim^n)  - a0
2 J*/(x) h {a^x-nbQ) dx. (4) 

Note that the processing is over continuous time but the wavelet representation is on a discrete 
grid. 

The time-scale or shift-scale characteristics of a function can be described in terms of a scale- 
translation lattice. The scale and translation discrete step sizes a0 and b0 a^determine the density 
of the discrete lattice. The translation step size bg ^""controls how far a wavelet may be translated 
before the next wavelet coefficient is computed. The choice of b0 aQrTLwill depend upon the time 
resolution properties of the mother wavelet. Often the scale discrete step size a0 is set to 2, so that 
a = 2m, and sampled signals are easily scaled by downsampling. 

A particular wavelet can be thought of as a bandpass filter. At high frequencies (small scales) 
the bandwidth of the wavelet is large. When considering lower frequencies (larger scales) the 
bandwidth of the wavelet decreases. The values of a = 2m, and b - nb(ß.m correspond to a time- 
frequency or time-scale lattice as shown in Fig. 1. Each cell in Fig. 1 corresponds to a correlation 
between a wavelet and the original function. Each cell represents the simultaneous time-scale res- 
olution of each discrete wavelet. In Fig. 1 the scale is increasing in the downward direction while 
the frequency increases in the upward direction. At higher frequencies the bandwidth (width of a 
resolution cell) increases maintaining a constant Q (ratio) between center frequency and band- 
width. For small scales the mother wavelet is compressed in time leading to small time support 
and good time resolution, but poor frequency resolution. For large scales the mother wavelet is 
compressed in frequency leading to small frequency support and good frequency resolution, but 
poor time resolution. 



At a particular scale the resolution cells are all the same size. The cells increase in length 
along the frequency axis by powers of two as the frequency increases. At the same time, the cells 
decrease in width (time or translation axis) by a factor of two as the frequency increases. 

time-frequency resolution cell 

rV 
Freq \ 

(scale) 

I 

Translation (time) 

FIGURE 1. Scale-translation resolution of discrete WT 

Each resolution cell corresponds to a discrete wavelet coefficient where each coefficient can 
be considered as the output of a correlation between a wavelet at a particular scale and translation, 
and the input signal. 

Usually sampled signals are considered when implementing the discrete WT on a computer. 
We considered a general example in the frequency domain of how an jV-byte signal was wavelet 
transformed. This decomposition is called the discrete time wavelet series because both the input 
and wavelet domains are discrete; however, we refer to it as the discrete WT as do most texts. 
According to the scale-translation grid in Fig. 1 the number of wavelet coefficients needed at a 
particular scale decreases as the scale increases. Furthermore, as the scale decreases, the fre- 
quency bandwidth increases. For a signal represented by an W-byte vector, at the smallest scale 
(widest frequency band) we need NU coefficients. As the scale increases the frequency bandwidth 
decreases;by a factor of two for each wavelet so we need half as many coefficients, NI4. This is 
generally repeated until we have only 2 bytes left in the last remaining frequency band. This situ- 
ation is illustrated in Fig. 2 which may be considered as a side view of Fig. 1. 

N bytes 
N/S N/4 Nil 

0 nJ2 
scale frequency 

jt 

FIGURE 2. Frequency domain of N-byte signal 



By examining Fig. 2 it can be seen that the wavelet acts as a bandpass filter. Therefore, in a 
general sense a wavelet can be thought of as a bandpass filter and generally does have compli- 
cated behavior. 

Considering the grid in Fig. 1 the inverse discrete WT can be written as 

-m 

ax) - 22[w/{a>b)]a?'h(%mx'nbo) & 

where the summation is over m and n. The structure is the same as the continuous WT so the 
reconstruction processes are similar. 

2.4 Implementation of an orthogonal WT with quadrature mirror filters 
Usually, orthogonal or biorthogonal wavelets are used in wavelet representations with a scale 

step of 2. Orthogonal coefficients represent independent information so there is no redundancy. 
Orthogonal wavelets satisfy the condition that the cross-correlation between a scaled and trans- 
lated mother wavelet and the mother wavelet is an impulse in scale and translation. This condition 
was written as 

fhm,n(x)hm:n*(x)äx '  Ö(/H - tfl')6 <H - rf) . (6) 

which is equal to 1 if m=m', and n=n\ and equal to 0 otherwise. Independent wavelet coefficients 
are found by projecting an input function onto each basis element. 

The wavelet transform is a hierarchial operator, it operates on one scale then a larger scale 
(lower resolution). Orthogonality requires that the information at each scale be independent of 
other scales. Because we will have two "branches" at each scale in our decomposition, if the two 
branches are orthogonal, our wavelet will be referred to as biorthogonal. Biorthogonal transforms 
relax some of the constraints on the mother wavelet and allows the mother wavelet to be symmet- 
ric and have linear phase. 

The discrete WT can be implemented in an efficient manner by passing a signal through iden- 
tically structured processing stages where each successive stage processes half the number of bits 
as the previous stage. In this configuration the first Nil coefficients are generated at the first stage, 
M4 at the next and so on. A schematic diagram of the discrete WT decomposition is shown in Fig. 
3. The wavelet coefficients generated correspond to the resolution cells in Fig. I. In general N - 1 
processing blocks are needed to decompose an N - bit input. 

The approximation of the signal fix) at the resolution 7/ is referred to as Aj {fix)} where Ay is 
a projection operator that approximates the function _/fr) andy < 0. The signal Aj {fix)} isfix), the 
original signal at the highest resolution, and A{/2 {fix)},Ay4 {fix)}, etc. are lower resolution ver- 
sions off(x). The detail signal Dy{fix)} at the resolution # contains the difference of information 
between Ay+1 {fix)} and Ay {fix)}. These signals are indicated in Fig. 3. 
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FIGURE 3. DWT decomposition 

In each processing block the input is split and passed through a low-pass and high-pass filter. 
The impulse response of the high-pass filter h(n) is the mother wavelet. The impulse response of 
the low-pass filter g(n) is a related function called a scaling function. These filters have mirror- 
image symmetry about the frequency co = x/2 in the frequency domain and are referred to as 
quadrature mirror filters (QMFs).5 If the low-pass filter has frequency response G(w), then the 
high-pass filter has frequency response 

//(to)  - G((o-Jt). (7) 

In the time domain, this can be described by 

A («)  - (-l)ng(n), (8) 

where g(n) and h{n) are the impulse responses of the low- and high-pass filters respectively. The 
general relationship between the frequency responses of the scaling and wavelet functions is 
shown in Fig. 4. 



G(ü>) H(co) 

(0 

FIGURE 4. Filter characteristics of scaling function and wavelet in frequency domain 

The output of each filters in a processing stage is downsampled by a factor of two. The output 
from the high-pass filter portion, Dy {Jfx)} are wavelet coefficients at that scale. The output from 
the low-pass filter portion, Ay {fix)} are sent to the next processing stage or scale. The schematic 
diagram of a processing block is shown in Fig. 5. 

Input 

A21+I U*)} 

Low-pass 
filter g(n) 

JL 
Downsample 

High-pass 
filter h(n) 

Downsample 

Output to 
next stage 

Ajifix)} 

Dy {fix)}I   Wavelet coefficients 

FIGURE 5. Processing block for discrete WT 

2.5 Implementation of inverse WT with quadrature mirror filters 
As in the discrete WT, the inverse WT can be implemented in an efficient manner by passing a 

signal through identically structured processing stages where each successive stage processes 
twice the number of bits as the previous stage. A schematic diagram of the inverse discrete WT 
reconstruction is shown in Fig. 6. In general N - 1 processing blocks are needed to reconstruct an 
N -bit time signal. As in the case of the discrete WT, wavelet coefficients correspond to resolution 
cells in Fig. 1. 
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block 

Wavelet 
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/ 

FIGURE 6. Inverse discrete WT reconstruction 

In each processing block the input from the previous stage and the wavelet coefficients at that 
stage are upsampled with zeros then passed through separate filters. The filter processing the 
wavelet coefficients has impulse response 7i(n), and the filter corresponding to samples from the 
previous stage has impulse response g(n). The output of the filters are then summed together. In 
orthogonal transforms the decomposition and reconstruction filters in Figs. 5 and 7 respectively 
are the same.The schematic diagram of a processing block is shown in Fig. 7. 

Output 

Ay* J {fix)} 
Filter" g(n) 2W 

Upsample 

Filter ^h(n) 

4 2 ^ Upsample 

I>2J {fix )}f Wavelet coefficients 

Input from 
previous stage 

Ajf {fix)} 

FIGURE 7. Inverse discrete WT processing block 



One of the biorthogonality constraints demands that the input signal be perfectly recon- 
structed. Aliasing resulting from the downsampling in the discrete WT can be perfectly cancelled 
by properly choosing the filter coefficients in the inverse discrete WT. In the time domain, this 
can be described by 

'h(n)-2g(n) 

'h(n) --2(-l)n'g(n) 

where g'(n) and h'(n) are the impulse responses of the low- and high-pass filters respectively. In 
the frequency domain they can be described as 

'G(co) -2G(o>) 
'H(oi) ~-2'G(o)-x) ' 

The second biorthogonality constraint requires that each channel have independent informa- 
tion which can be written as 

G(ü))'//(co)  -   OandH(<o)'G(<o)   -0 
v v   ' (11) 

These conditions are imposed directly on the filter coefficients. 

2.6 Examples of wavelets 
Many functions exist that can serve as wavelets; however, not all of them may be of interest. 

We primarily considered some wavelets discovered by Daubechies.6They have been well-studied 
and shown to be useful. The wavelets we examined could be described by filter coefficients used 
in the filters of the previous section. Specifically, a filter is described by the following difference 
equation 

y[n]  . c[l]x[n] +c[2]x[n-\] + ... + c[M]jt[/!-A/+1] (12) 

where x is the data vector being operated on, c's are the filter coefficients, and M is the number of 
coefficients in the filter. We considered Daubechies wavelets that had 4,6, 12, and 20 filter coeffi- 
cients that are tabulated in the appendix. These wavelets are referred to as Daub4, Daub6 etc. 

We also considered the Haar wavelet, and one discovered by Lemaire. The Haar wavelet is 
most easily described in the input domain as 

10 



TJ)(X) 

l  ifo*x<L J 2 

-l ifL*x<i J 2 
0    otherwise 

(13) 

its filter functions are both described in the appendix. Lemaire's wavelet is most easily described 
in the frequency domain by its scaling function as 

G(w)  -    2(1-«) [' 
2 3-172 

,4315-420M+126« -4M 

315-420v+i26v2-4v3_ 
(14) 

where u = sin~(ü/2, and v = sin to. 
We compared the scaling functions in the frequency domain of different wavelets in Fig. 8. 

The figure shows that the scaling function associated with the Haar wavelet has the broadest 
response while the scaling function associated with the Lemaire wavelet had the narrowest. 

0 
frequency 

Daub12 
Daub20 
Lemaire 

Haar 
Daub4 
Daub6 

Ü) 

FIGURE 8. Frequency response of different scaling (unctions associated with different 
wavelets. 
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We also showed the relationship between the impulse response of the low- and high-pass fil- 
ters specifically for the Daub4 wavelet in Fig. 9. 

1 

0.8- 

0.6- 

0.4- 

0.2- 

0 
frequency 

FIGURE 9. Frequency response of low« and high-pass filters (scaling function and 
wavelet) for Danb4 wavelet 

In Fig. 10 we showed the Daub4 wavelet in the input domain and in Fig. 11 we showed the Haar 
wavelet. 

FIGURE 10. Daab4 wavelet in input domain 

12 



FIGURE 11. Haar wavelet in input domain 

2.7 Digital implementation 
The WT can be viewed as a matrix transformation operating on a vector to produce another 

vector in a hierarchial manner. We considered the WT described by four filter coefficients. The 
transformation matrix for an N-bit input where N - 8 looked like 

s\ c0 c,  c2 c3   0   0    0   0 ^i 

*x c3 -c2 c, -c0 0    0    0    0 ^2 

H 0   0   cQ Cj  c2 c3   0   0 y3 

*i 
0   0   c3 -c2c{ -c0 0    0 ^4 

S3 
0   0   0    0   c0 c,  c2 c3 y5 

<*3 
0   0   0   0   c3 -c2 Cj -c0 ^6 

U c2 c3   0    0   0   0   c0 c, y? 

h c, -c0 0   0   0    0   c3 -c2 v8 

(15) 

where v is the input vector. Different size matrices used on different size input vectors would look 
similar with only four coefficients per row. The coefficients in the transformation matrix represent 
filters described in the previous section. The coefficients c0, cj, c2, and c3 correspond to a low- 
pass filter (scaling function) and the coefficients c3, -c2, ch and -c0 correspond to a high-pass filter 
(wavelet). The same coefficients are repeated every other row shifted by two columns. The even 
rows perform a convolution with the low-pass filter, and the odd row perform a convolution with 
the high-pass filter. The matrix also downsamples the two convolutions and interleaves the two 
results. 

13 



The discrete WT consists of applying the matrix in Eq. (15) in a hierarchial manner. The ds in 
Eq. (13) are the wavelet coefficients produced at the smallest scale. Then, the s 's are grouped to 
together to form a vector of length NI2 which is operated on by a NI2 x NI2 coefficient matrix. 
After transformation by this new matrix a new set of M4 s's and A74 cTs are generated. These new 
cfs are the wavelet coefficients at the next largest scale and the s 's are operated on by a smaller 
matrix until a vector with two s's remains. The two remaining s's are called "mother-function 
coefficients"; however, the term "wavelet coefficients" is used to describe the two s's and all the 
cfs. Eq. (14) shows a diagram of the calculation of the DWT on an 8-bit input vector y. 

y\ 

yi 

y* 

3>4 " 

?5 

^6 

yi 

y* 

transform permute 

d4 

r   1 
transform -* 

«V 

*1 

"2 

permute -* 

V i 

'2 

«V 
*2 

. 

*X 

<h 
<h 
d4 . 

(16) 

The coefficients in rows 1 and 2 in the last column of Eq. (16) correspond to wavelets at the 
largest scale. The coefficients in rows 3 and 4 correspond to wavelets at the next largest scale, 
rows 5 - 8 to the next largest, and so on to rows 2N' - 2N. The coefficients within rows corre- 
sponding to a particular scale indicate the shifts within that scale. 

2.8 Inverse digital wavelet transform 
To calculate the inverse discrete WT, the procedure in Eq. (16) is reversed using the inverse of 

the matrix in Eq. (15). In our example the inverse is the transposed matrix and the transformation 
looks like 

14 



y4 

y5 

y6 

y? 

ys 

c0 c3   0   0    0   0   c2 c, 

c, -c2 0    0    0   0   c3 -c0 

c2 c,  c0 c3   0   0   0   0 
c3 ~c0 Cl ~C2  0    0    0 0 

0   0c2c,  c0 c3   0 0 

0   0   c3 -c0 Cj -c2 0 0 

0   0   0   0   c2 c{  cQ c3 

0   0   0   0   c3 -c0c, -c2 

4 

(17) 

As before, different size matrices would look similar with four coefficients per row. The same 
coefficients are repeated every other row shifted by two columns. 

The inverse discrete WT consists of applying the matrix in Eq. (17) in a hierarchial manner. 
The cTs in Eq. (17) are the wavelet coefficients at a particular scale and the s's are the input from 
the previous stage. The s's and the <fs are contained in AV2-length vectors interleaved to produce 
an N -length vector. This vector is operated on by theNxN coefficient matrix. After transforma- 
tion by the matrix a new set of wavelet coefficients are interleaved with the result and the process 
is repeated. Eq. (18) shows a diagram of the calculation of the inverse discrete WT for an 8-bit 
vector. 

V 
*i 

dx 

d2 ■ 

dx 

<h 
<h 
d4 

permute 

dx 

d2' 

dx 

d2 

d3 

transform 

s2 

s4 

dx 

d2 

permute transform 

y2 

y* 

y+ 

y5 

y6 

y7 

y8 

(18) 

The first transformation is performed by a 4 x 4 coefficient matrix and second by an 8 x 8 coeffi- 
cient matrix. The last column vector y in Eq. (18) is the reconstructed time signal.   

Finally, the WT can be more computationally efficient than the FT. For an AMength FFT, 0(N 
log'» N) operations are needed. Using the filter structure in the previous section as the fast WT, 

15 



0{N logo L) operations are needed where L is the length of the digital filters. Therefore, the fast 
WT is faster than the FFT by a factor of log2N/log2L. 

2.9 Two-dimensional wavelet transform 
The WT can also be extended to higher dimensions. We considered the two-dimensional 

implementation for image processing. Eq. (4) was modified as 

-s   -m. 
T„~T W/(m,n,5,0  - aJaQ

2 Jjf(x,y)h(a~ x-nb9aQ y-tbQ)dxdy, (19) 

where now the WT can be considered 4-dimensional. In an analogous manner the inverse WT in 
two dimensions was written as 

-m   -s 

A*.y) 2 2 2 2[ w^{mt n'Sy t] ] a°2 %2 h {c*mx-nbo> aomy-tbo) 
m   n    s    i 

(20) 

The two-dimensional WT can be implemented with one-dimensional convolutions of the rows 
and columns on an image with one-dimensional QMFs.3 For example, the rows of an image are 
filtered as in the one-dimensional case. Only every other row is retained and the columns of the 
remaining signals are filtered and every other column retained. A block diagram of the structure is 
shown in Fig. 12. The image Ay+l ißx,y)} is decomposed into four images, a lower resolution 
version of itself A^{ß[x,y)}, and the detail images, D1^ ißx,y)}, D2^ {flx,y)}, and tfy ißx,y)}- 

Ay+i ifx,y)} 

High-pass 
filter h(n) 

Low-pass 
filter g(n) 

i 

I 

High-pass 
filter h(n) 

Low-pass 
filter g(n) 

High-pass 
filter h(n) 

Low-pass 
filter g(n) 

i 
DJ2J{fix,y)} 

Wavelet 
coefficients 

D22J{f[x,y)} 

i 
i 

D]2){flx,y)} 

i 
*2! {ßx,y)} 

tput to 
next stage 

FIGURE 12. Decomposition of an image A^/f/ ifix,y)} using one-dimensional filters 
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The wavelet decomposition in two-dimensions can be thought of as a set of spatially oriented 
frequency channels. When the image Ay+1 {ßx,y)} is decomposed the output at a particular scale 
generally corresponds to regions in the Fourier plane.3 The image A y {flx,y)} corresponds to the 
lowest frequencies, D1 $+1 ifix,y)} corresponds to the vertical high frequencies and the horizontal 
low frequencies (horizontal edges), D22J+1 {fix,y)} corresponds to the vertical low frequencies 
and the horizontal high frequencies (vertical edges), and D3y+l {flx,y)} corresponds to the verti- 
cal high frequencies and the horizontal high frequencies comers). Figure 13(a) shows the fre- 
quency support of the images which can be thought of as two-dimensional extension of Fig. 1. In 
addition Fig. 13(b) shows how a the wavelet representation of an image is often displayed. 

iflx,y)} 

D2* 

ti Jy 

rfiMw)} 

*J2\ 

n/2 
Aj {/(x,y)} 

DJ2i V(x,y)} 

&2J 
{/(x,y)} 

iflx,y)} 

a fx 

tfy+l 
D*2i{ßx,y)} 

tfy+I tflj+l 

tfyiK^y)} tfjiflw)} 

(a) (b) 

FIGURE 13. Wavelet representation of an image from Ref. 3 (a) frequency support of 
decomposed image (b) wavelet representation of an image 

In an analogous manner to wavelet decomposition, the one-dimensional reconstruction algo- 
rithm has been extended to two-dimensionsr At each scale, an image A y+1 ißx,y)} is recon- 
structed with the lower resolution version Ay ifix,y)} and the wavelet coefficients at that 
particular scale. Between each column of the images we add a column of zeros, convolve the rows 
with a 1-D filter, add a row of zeros between each row of the resulting image, and convolve the 
columns with another 1-D filter. This process is shown in Fig. 14. 
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FIGURE 14. Reconstruction of the image Aj/f/ {flxy) using one-dimensional filters 

3.0 Optical wavelet transform 

Optical processing takes advantage of the interpretation of a WT as the correlation between an 
input signal and a wavelet. Therefore, an optical correlator may be used to generate the WT. A 
wavelet at a particular scale is correlated with an image to generate all the wavelet coefficients at 
that scale. One optical correlation is needed for each scale of the mother wavelet. 

7   10 
Several experiments have been performed that use inputs recorded on film. In most cases 

these have been for one-dimensional signals and both the WT and its inverse have been demon- 
strated. Two-dimensional systems have also been described.l3 

The Haar wavelet has been most popular with optical implementations because its the sim- 
plest wavelet and can often be implemented easily. The Haar wavelet can be implemented with a 
binary spatial light modulator (SLM) that has a zero state.I4 Using this approach the Haar wavelet 
was placed in the input plane of a 4f optical correlator, and a hologram of an image was placed in 
the Fourier plane. A family of Haar wavelets were correlated with the input image to generate the 
magnitude of the WT. One drawback was that the binary device could not produce the scaling 
factor associated with a wavelet. Furthermore, the binary SLM had difficulty producing a true 
zero state required for the family of wavelets which degraded the results. Finally, the results were 
degraded by a DC component present in the wavelet's frequency domain. 

Another approach chose a wavelet with a positive real binary FT, then approximated the 
wavelet with a positive real binary pattern.15 A joint-transform correlator based on the WT has 
been also demonstrated. In this work, the input and reference object were implemented on a 
pixelated device and the first five orders of the joint-FT were imaged onto a power-law device. 
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Then, a fixed mask containing five wavelet filters was imaged onto the power spectrum of the 
inputs. In this way, the output correlation response consisted of five correlations, one for each 
wavelet filter. 

Optical processing of the WT has been applied to the processing of synthetic aperture radar 
(SAR).17 In this work an acousto-optic cell was used in the input plane of an optical correlator 
using simulated SAR data and a liquid crystal television in the filter plane. An opticaUomposite 
filter was introduced that was able to yield desired outputs for a given set of inputs. There are 
several other interesting papers in Refs. 19-21 including algorithms used for the detection of 

objects. ~" 
We described a one-dimensional set-up for implementing the WT and its inverse optically 

using four scales. This configuration was used in Ref. 15 and is basically two cascaded optical 
correlators. A schematic diagram of the system is shown in Fig. 15 with the distance between a 
lens and a plane equal to/, the focal length of the lens. A cylindrical lens first focuses collimated 
light on a one-dimensional input in plane PI. The spherical lens then produces the FT of the input 
in plane P2. The FTs will spread in the ^direction. Therefore, placing a bank of FTs of wavelets at 
different scales oriented in the x-direction will produce correlations between the input and the 
wavelets in parallel. In this diagram the scale increases as a increases. The resulting correlation 
between the input signal and the wavelets will appear in plane P3. Inserting a bank of wavelets in 
plane P3 produces the WT in plane P4, the convolution between the WT and the wavelets. 
Orthogonal views of Fig. 15 are shown in Fig. 16. 

Because the FT can be implemented relatively efficiently with optics, an optical correlator has 
been shown to be useful for object recognition. Because the WT and its inverse can be viewed as 
correlation operations, it seems that signal processing using wavelets could benefit from an opti- 
cal implementation. However, some important considerations must be acknowledged. The first is 
the increase in dimensionality of the processing. When viewed as correlation operations, the WT 
increases the dimensionality of the system. For 1-D systems a 2-D wavelet domain must be pro- 
cessed. For the 2-D case, a 4-D or multiple 2-D domains must be processed. 

As the scale of the wavelet increases fewer number of coefficients are needed and the optical 
implementation becomes less efficient. For a one-dimensional input, only half the number of pix- 
els as the input are needed to determine the wavelet coefficients at the smallest scale. At the next 
largest scale only 1/4 the pixels are needed. At the next two larger scales only 1/8 and 1/16 the 
number of pixels are needed respectively. Generally an optical system has a fixed resolution so 
that the optical system must be designed for use with the highest resolution system even though 
the resolution is not always needed. For example, to perform the WT in parallel for a jV-byte one- 
dimensional input, ay x N pixel wavelet domain must be considered where j is the number of 
scales considered. For the two-dimensional case, a ßN2 wavelet domain must be considered for 
an /V x /V input image. Due to the limited resolution of existing SLMs, this can be a serious limita- 
tion for optical wavelet processing of images. 
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FIGURE 15. Optical implementation of the WTand inverse WT for a one-dimensional 
input. Distances between lenses and planes are equal to/. 

Finally, the negative numbers generated or needed by the WT and its inverse may be difficult 
to implement optically. As in optical FT processing, complex numbers can be handled by per- 
forming operations using coherent light. Such an approach requires the full resolution of each 
scale in the WT. In other words, the WT or its inverse cannot generally be performed sequentially 
with a lower resolution optical system. In spite of the drawbacks of implementing the WT opti- 
cally, there may be areas where optics may be useful. Perhaps in examining a limited number of 
scales of a WT or multiresolution processing where the above considerations can be minimized or 
eliminated. 
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top view. 

4.0 Mnltiresohition processing 

In multiresolution processing, a signal is processed multiple times, each time at a different 
resolution. An image is generally represented by a series of lower-resolution versions of itself, 
including the original image. In the case of identifying objects, a low-resolution version of an 
image could be used to find regions of interest in an image that gives only the approximate size 
and location of an object To determine more precisely the size and location of an object, informa- 
tion must be passed down from the lower-resolution version of the image to a higher-resolution 
version. This procedure is repeated until the highest resolution of the pyramid is reached. 

A limiting factor in the application of optical correlators is that the number of pixels of cur- 
rently available spatial light modulators (SLMs) is often not large enough for a variety of applica- 
tions. Many applications require at least 512 x 512 pixels, which is larger than most SLMs, and 
applications requiring more pixels are not uncommon. One approach to this problem is to process 
large images at lower resolutions beginning with the lowest resolution. In this way, knowledge 
about an object's shape or location is made more precise on successively higher resolution ver- 
sions of an image. 

Pyramidal processing is a form of multi-resolution processing, where an image is processed 
multiple times, each time at a different resolution.23 In pyramid processing, an image is repre- 
sented by a series of lower-resolution versions of itself, including the original image. Using digi- 
tal image processing techniques, template matching has been previously investigated using a 
pyramid structure to identify objects or their features?4 For example, a low-resolution version of 
an image was used to find regions of interest in an image that give only the approximate size and 
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location of an object. To determine more precisely the size and location of an object, information 
must be passed down from the lower-resolution version of the image to a higher-resolution ver- 
sion. This procedure is repeated until the highest resolution of the pyramid is reached. An optical 
technique may be used to generate layers of the pyramid, or an image can be processed with a 
lower-resolution optical correlator for object recognition using pyramid processing.2^ 

4.1 Multiresolution processing using the wavelet representation 
The data in the pyramid structures are correlated. As pointed out in Ref. 3 it is not clear 

whether a similarity between the image details at different resolutions is due to a property of the 
image itself or to the redundancy of the representation. In the orthogonal wavelet representation 
there is no oversampling and data at different levels are independent The wavelet representation 
allows a multiresolution representation to be constructed based on the difference of information 
available at two successive resolutions. 

We have previously introduced a multiresolution operator Ay in Sec. 23. Here, we expand on 
this concept and consider some of the properties of multiresolution processing. The operator Ay 
is an orthogonal projection on a vector space, and Ay {fix)} is not modified if we approximate it 
again at resolution 21. In addition, Ay {fix)} is the function which is most similar to fix) at resolu- 
tion J. Furthermore, the approximation of a signal at a resolution 2* contains all the necessary 
information to compute the signal at resolution 2/ . Finally, the approximation operation is simi- 
lar at all resolutions. 

The projection of fix) onto a vector space can be achieved with a convolution operation. The 
approximation of a signal fix) at resolution ^can be viewed as a convolution between the signal 
fix) and a scaling function $(x) followed by a uniform sampling at the rate of 2f. The approxima- 
tion can be written as 

A^{f{x)\   -Jf(u)<pJu-2-Jn)du. (21) 

In two dimensions Eq. 21 can be written as 

Ajfiffry)}  -JJf(u,V)^(u-2-Jn)^(V-2-Jm)dudv, (22) 

if a separable scaling function is used. As indicated in Sec. 23 the signal Aj {fix)} =fix), the orig- 
inal signal at the highest resolution. The function fix) at the resolution 2J can be referred to as Ay 
{fix)} withy < 0. The signals Am {fix)}, A1/4 {fix)}, etc. are lower resolution versions of fix). 

The multiresolution approximation is completely characterized by the scaling function. It is 
possible to chose scaling functions with good localization properties in both the frequency and 
input domains. 



The detail signal Dy {fix)} at a resolution 2} contains the difference of information between 
two successive approximations Ay+l {fix)} and Ay {fix)}. The detail signal at resolution ^can 
be viewed as a convolution between the signal/.*) and the wavelet h(x) followed by a uniform 
sampling at the rate of 3/. The detail signal can be written as 

Dfifix)}  -pMhjiu-l-'nidu, (23) 

where the wavelet h(x) can be generally thought of as a bandpass filter in the frequency bands ![2" 
j x/2, 2~J+l JI]I. In two dimensions there are three detail signals corresponding to the separable 
products ofh(x) and (j>(x). The detail signals can be written in two dimensions as 

D^ifix.y)}   - Jjf(u,v)^(u-2-Jn)h7(v-2-Jm)dudv (24) 

D\ {f(x, v) }   - jJ/( u,v)hi(u- 2~Jn) 4>f (v - 2~}m) dudv (25) 

D3l {fix, y) }  - fff(u, v)h7(u- 2~Jn) h^v- 2";m) dudv (26) 

where their frequency support was illustrated in Fig. 13(a). 
For the one-dimensional case, an orthogonal representation of a signal consists of the original 

signal at a coarse resolution -7 and the detail signals at higher resolutions -/< j <-l. The repre- 
sentation can be written as 

{ArJ{f{x)},D   {f{x,y)} ). (27) 

where 2~J indicates the coarsest resolution. In two dimensions an image is completely represented 
by that image at a coarse resolution and the 37+1 detail images as 

(A2,{f(x,y)},D\{f(*>y)}^j%_{i>\U{x>y)}_j%J%_x,i?iiftey)}_JSJ*J &> 

The number of pixels in this representation is equal to the number of pixels in the original image 
which is due to the orthogonality of the representation. An illustration of the decomposition is 
represented in Fig. 13(b). 
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43. Optical multiresolution processing 
Because each level of a multiresolution representation represents a different resolution, each 

level contains a different size image. Because we usually process only a constant size image with 
an optical correlator, we processed only a portion of an image when the resolution is increased. 
We considered a hybrid approach to multiresolution processing by using a computer to filter and 
downsample an image, then used an optical system to perform correlations between the image and 
a reference. Using this technique large images can be searched in parallel using an optical correla- 
tor.26 We compared the performance of multiresolution processing using the scaling functions 
described previously to the optimal result We also showed by simulation the results of processing 
a 256 x 256 pixel image from an infrared sensor with a 128 x 128 pixel optical correlator. 

We examined the performance by computer simulation of a binary optical correlator using 
autocorrelation experiments. We compared the performance of the scaling functions to an ideal 
low-pass filter because the ideal low-pass filter provides the optimum result. We used a 256 x 256 
image consisting of an object in a constant background in our autocorrelation experiments. The 
central 128 x 128 pixels are shown in Fig. 17. We performed digital filtering on the 256 x 256 
image using the different scaling functions followed by downsampling to create a 128 xl28 
image. To form the reference filter, the 256 x 256 image was ideally low-pass filtered, downsam- 
pled, then made into a binary phase-only filter (BPOF). Correlations were then performed 
between the differently-filtered input image and the BPOF. The signal-to-noise ratio (SNR) and 
the peak-to-correlation energy (PCE) were used as performance measures. The PCE can be con- 
sidered as a measure of correlation peak sharpness. 

* 

FIGURE 17. Image used in autocorrelation experiments 

The SNR and PCE combination that corresponds to a each scaling function are tabulated in 
Table 1. The SNR and PCE resulting from an ideally low-pass filtered input image were each set 
to 100 for comparison. It can be seen that the choice of scaling function significantly affects the 
SNR and PCE of the autocorrelation result. The scaling function associated with the Lemaire 
wavelet had almost the same performance as the ideal low-pass filter. For all scaling functions 
both the SNR and PCE were lower than the ideal low-pass filter result. 



There does not seem to be an obvious pattern to the performance of the different scaling func- 
tions. It appears that perhaps the Lemarie scaling function produced the overall best result. How- 
ever, the scaling function most similar to the Lemaire scaling function, the Daub20 gave the 
poorest performance. The Haar scaling function, which is the least similar to the ideal low-pass 
filter produced results better than half the scaling functions considered. 

TABLE 1. Performance using different scaling operations 

Scaling 

operation SNR PCE 

Ideal low-pass 100 100 

Haar 883 78.8 

Daub4 94.2 90.0 

Daub6 59.4 58.9 

Daubl2 18.7 22.1 

Daub20 15.6 16.7 

Lemaire 97.1 99.4 

We compared the performance of the scaling functions using the BPOF described earlier to 
that of the ideal low-pass filter when some frequencies of the BPOF were eliminated. It has been 
previously shown that the SNR can be increased by setting the filter magnitude to zero where the 
FT of the input image is small.27 The region of transmitting pixels associated with a particular fil- 
ter is referred to as the support region. We plotted both the SNR and the PCE as a function of 
transmitting pixels in Fig. 18. Each value of transmitting pixels indicates a different support func- 
tion. The graph shows that there is a trade-off between SNR and PCE. Generally, as the SNR 
increased the PCE decreased. The values of PCE corresponding to the region where the SNR is a 
maximum is often, as in this case, unacceptable. Therefore, a good compromise is usually sought. 

0 transmitting pixels 16384 

FIGURE 18. SNR and PCE for different support functions for autocorrelation of 256 x 
256 ideally tow-pass filtered image 
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The trade-off between SNR and PCE is often seen better with a graph of SNR as a function of 
PCE. The data in Fig. 18 was plotted in Fig. 19 to examine this trade-off. In addition, the SNR - 
PCE combinations associated with the scaling functions are also indicated. The results show that 
the performance of some scaling functions appear to be similar to the performance of some of the 
support functions. However, the performance of other scaling functions does not appear to be sim- 
ilar to some support functions. 
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FIGURE 19. Graph of SNR as a function PCE for different support functions for 
autocorrelation of 256 x 256 ideally low-pass filtered image, and performance of scaling 
functions using all pixels of filter transmitting 

5.0 Summary and Conclusion 

Wavelets appear to be an interesting topic of research with many possible applications to areas 
such as pattern recognition, image processing, and image compression to name a few. However, 
the role optics is to play in terms of implementations is not clear. 

Optical processing takes advantage of the interpretation of a WT as the correlation between an 
input signal and a wavelet. Therefore, an optical correlator may be used to generate the WT. A 
wavelet at a particular scale is correlated with an image to generate all the wavelet coefficients at 
that scale and several experiments have been demonstrated. 

Some important considerations must be acknowledged for a practical implementation. The 
first is the increase in dimensionality of the processing. When viewed as correlation operations, 
the WT increases the dimensionality of the system. For 1-D systems a 2-D wavelet domain must 
be processed. For the 2-D case, a 4-D or multiple 2-D domains must be processed. 

As the scale of the wavelet increases fewer number of coefficients are needed and the optical 
implementation becomes less efficient. Generally an optical system has a fixed resolution so that 
the optical system must be designed for use with the highest resolution system even though the 
resolution is not always needed. Due to the limited resolution of existing SLMs, this can be a seri- 
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ous limitation for optical wavelet processing of images. Finally, the negative numbers generated 
or needed by the WT and its inverse may be difficult to implement optically. 

In spite of the drawbacks of implementing the WT optically, there may be areas where optics 
may be useful. Perhaps in examining a limited number of scales of a WT or multiresolution pro- 
cessing where the above considerations can be minimized or eliminated. Multiresolution process- 
ing would probably benefit from a hybrid approach. Digital processing could generate different 
resolution images and select portions of an image to be processed. Then an optical correlator 
could be used to process selected imagery further. 
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6.0 Appendix 

TABLE 2. Filter coefficients for Haar, Daub4 and Daub6 wavelets 
Haar Daub4 Daub6 

Scaling Wavelet Scaling Wavelet Scaling Wavelet 

cO = 0.70711 cO' = cl= 0.70711 c0 = 0.48296 cO' = c3 =-0.12941 c0 = 03327 c0' = c5 = 0.0352 

cl =0.70711 cl* = -c0 = -0.70711 cl =0.83652 cl'=-c2 =-0.22414 cl =0.8069 cl'=-c4= 0.0854 

c2 = 0.22414 c2'=cl= 0.83652 c2 = 0.4599 c2'=c3 =-0.1350 

c3 =-0.12941 c3'=-c0 = -0.48296 c3 = -0.1350 c3' = -c2 = -0.4599 

c4 =-0.0854 c4'=cl= 0.8069 

c5 = 0.0352 c5 = -c0 = -03327 

TABLE 3. Filter coefficients for Daub 12 and Daub20 wavelets 
Daub 12 Daub20 

Scaling Wavelet Scaling Wavelet 

cO = 0.11154 cO'=cll =-0.0010773 c0= 0.026670 c0*=c 19 =-0.000013264 

cl =0.49462 cl'=-cl0 =-0.0047773 cl =0.18818 cl' =-c 18 =-0.000093589 

c2 = 0.75113 c2' = c9 = 0.00055384 c2 = 0.52720 c2'=cl7 =-0.00011647 

c3 =031525 c3'=-c8 = 0.031582 c3 = 0.68846 c3' = -c 16 = 0.00068586 

c4= -0.22626 c4' = c7 = 0.027523 c4 = 0.28117 c4'=c 15 = 0.0019924 

c5 =-0.12977 c5 = -c6 = -0.097502 c5=-0.24985 c5*=-cl4 = -0.0013954 

c6 = 0.097502 c6'=c5 =-0.12977 c6=-0.19595 c6*=cl3 =-0.010733 

c7 = 0.027523 cT=-c4 = 0.22626 c7 = 0.12737 cT = -cl2 =-0.0036066 

c8 =-0.031582 c8* = c3=031525 c8 = 0.093057 c8'= ell =0.033213 

c?= 0.00055384 c9*=-c2 =-0.75113 c9 =-0.071394 c9' = -c 10 = 0.029458 

cl0 = 00047773 010*= cl =0.49462 c 10 =-0.029458 c Iff =c9 =-0.071394 

ell =-0.0010773 cll' = -cO=-0.11154 ell =0.033213 cll'=-c8=-0.093057 

cl2 = 0.0036066 cl2'=c7 = 0.12737 

cl3 =-0.010733 cl3'=-c6= 0.19595 

c 14 = 0.0013954 c 14'=c5 =-0.24985 

cl5 = 0.0019924 c^ =-c4=-0.28117 

cl6 = -0.00068586 cl6'=c3 = 0.68846 

cl7 = -0.00011647 clT =-c2 = -0.52720 

cl8 = 0.000093589 cl8'=cl =0.18818 

cl9 =-0.000013264 c 19* =-c0=-0.026670 

28 



TABLE 4. Filter coefficients for Lemaire wavelet 

Lemaire 

Scaling Wavelet 

c0 = 0.011237 c0'=-cl8 = -0.011237 

cl = 0.009490 cl'=c 17 = 0.009490 

c2 = -0.02426 c2' = -c 16 = 0.02426 

c3 = -0.019294 c3'=cl5 =-0.019294 

c4 = 0.055723 c4' = -cl4 =-0.055723 

c5 = 0.036647 c5"=c 13 =0.036647 

c6=-0.14294 c6'=-cl2 = 0.14294 

c7 = -0.057687 cT= ell =-0.057687 

c8 = 0.55641 c^-c 10 = -0.55641 

c9 = 0.97299 c9'=c9 = 0.97299 

cl0 = 0.55641 cl0'=-c8 = -0.55641 

ell = -0.057687 ell'=c7 = -0.057687 

c 12 =-0.14294 cl2'=-c6 = 0.14294 

cl3 = 0.036647 c 13'=c5 = 0.036647 

c 14 = 0.055723 cl4'=-c4=-0.055723 

c 15 =-0.019294 cl5=c3 =-0.019294 

c 16 =-0.02426 cl6=-c2 = 0.02426 

cl7 = 0.009490 cl'=c 1=0.009490 

cl8 = 0.011237 cl8*=-c0 =-0.011237 
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